home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
IRIX 6.2 Development Libraries
/
SGI IRIX 6.2 Development Libraries.iso
/
dist
/
complib.idb
/
usr
/
share
/
catman
/
p_man
/
cat3
/
complib
/
slasr.z
/
slasr
Wrap
Text File
|
1996-03-14
|
4KB
|
133 lines
SSSSLLLLAAAASSSSRRRR((((3333FFFF)))) SSSSLLLLAAAASSSSRRRR((((3333FFFF))))
NNNNAAAAMMMMEEEE
SLASR - perform the transformation A := P*A, when SIDE = 'L' or 'l' (
Left-hand side ) A := A*P', when SIDE = 'R' or 'r' ( Right-hand side )
where A is an m by n real matrix and P is an orthogonal matrix,
SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
SUBROUTINE SLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
CHARACTER DIRECT, PIVOT, SIDE
INTEGER LDA, M, N
REAL A( LDA, * ), C( * ), S( * )
PPPPUUUURRRRPPPPOOOOSSSSEEEE
SLASR performs the transformation consisting of a sequence of plane
rotations determined by the parameters PIVOT and DIRECT as follows ( z =
m when SIDE = 'L' or 'l' and z = n when SIDE = 'R' or 'r' ):
When DIRECT = 'F' or 'f' ( Forward sequence ) then
P = P( z - 1 )*...*P( 2 )*P( 1 ),
and when DIRECT = 'B' or 'b' ( Backward sequence ) then
P = P( 1 )*P( 2 )*...*P( z - 1 ),
where P( k ) is a plane rotation matrix for the following planes:
when PIVOT = 'V' or 'v' ( Variable pivot ),
the plane ( k, k + 1 )
when PIVOT = 'T' or 't' ( Top pivot ),
the plane ( 1, k + 1 )
when PIVOT = 'B' or 'b' ( Bottom pivot ),
the plane ( k, z )
c( k ) and s( k ) must contain the cosine and sine that define the
matrix P( k ). The two by two plane rotation part of the matrix P( k ),
R( k ), is assumed to be of the form
R( k ) = ( c( k ) s( k ) ).
( -s( k ) c( k ) )
This version vectorises across rows of the array A when SIDE = 'L'.
AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
SIDE (input) CHARACTER*1
Specifies whether the plane rotation matrix P is applied to A on
the left or the right. = 'L': Left, compute A := P*A
PPPPaaaaggggeeee 1111
SSSSLLLLAAAASSSSRRRR((((3333FFFF)))) SSSSLLLLAAAASSSSRRRR((((3333FFFF))))
= 'R': Right, compute A:= A*P'
DIRECT (input) CHARACTER*1
Specifies whether P is a forward or backward sequence of plane
rotations. = 'F': Forward, P = P( z - 1 )*...*P( 2 )*P( 1 )
= 'B': Backward, P = P( 1 )*P( 2 )*...*P( z - 1 )
PIVOT (input) CHARACTER*1
Specifies the plane for which P(k) is a plane rotation matrix. =
'V': Variable pivot, the plane (k,k+1)
= 'T': Top pivot, the plane (1,k+1)
= 'B': Bottom pivot, the plane (k,z)
M (input) INTEGER
The number of rows of the matrix A. If m <= 1, an immediate
return is effected.
N (input) INTEGER
The number of columns of the matrix A. If n <= 1, an immediate
return is effected.
C, S (input) REAL arrays, dimension (M-1) if SIDE = 'L' (N-1)
if SIDE = 'R' c(k) and s(k) contain the cosine and sine that
define the matrix P(k). The two by two plane rotation part of
the matrix P(k), R(k), is assumed to be of the form R( k ) = (
c( k ) s( k ) ). ( -s( k ) c( k ) )
A (input/output) REAL array, dimension (LDA,N)
The m by n matrix A. On exit, A is overwritten by P*A if SIDE =
'R' or by A*P' if SIDE = 'L'.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
PPPPaaaaggggeeee 2222